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ABSTRACT

An experimental research program providing basic knowledge and establishing a

database on the fluctuating pressure loads produced on aerodynamic surfaces beneath three-

dimensional shock wave/boundary layer interactions is described. Such loads constitute a

fundamental problem of critical concern to future supersonic and hypersonic flight vehicles.

A turbulent boundary layer on a flat plate is subjected to interactions with swept planar
shock waves generated by sharp fins at angle of attack. Fin angles from 10 to 20* at

freestream Mach numbers of 3 and 4 produce a variety of interaction strengths from weak

to very strong.

Miniature Kulite pressure transducers flush-mounted in the flat plate are used to

measure interaction-induced wall pressure fluctuations. The distributions of properties of

the pressure fluctuations, such as their rms levels, amplitude distributions and power spectra,

are also determined. Measurements have been made for the first time in the aft regions

of these interactions, revealing fluctuating pressure levels as high as 160 dB. These

fluctuations are dominated by low frequency (0-5 kHz) signals. The maximum rms levels

in the interactions show an increasing trend with increasing interaction strength. On the

other hand, the maximum rms levels in the forward portion of the interactions decrease

linearly with increasing interaction sweepback. These rms pressure distributions and spectra
are correlated with the features of the interaction flowfield.

The unsteadiness of the off-surface flowfield is studied using a new, non-intrusive

technique based on the shadowgraph method. The results indicate that the entire lambda-

shock structure generated by the interaction undergoes relatively low-frequency oscillations.

Some regions where particularly strong fluctuations are generated have been identified.

Fluctuating pressure measurements are also made along the line of symmetry of an

axisymmetric jet impinging upon a flat plate at an angle. This flow was chosen as a simple

analog to the impinging jet region found in the rear portion of the shock wave/boundary

layer interactions under study. It is found that a sharp peak in rms pressure level exists at

or near the mean stagnation point. It is suggested that the phenomena responsible for this

peak may be active in the swept interactions as well, and may cause the extremely high

fluctuating pressures observed in the impinging jet region in the present experimental

program.
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INTRODUCTION

Much effort has gone into the study of shock wave/boundary layer interactions (SWBLIs)

over the past few decades. This class of flows, besides representing a fundamental fluid

dynamics problem, is also of significant practical importance since SWBLIs are ubiquitous

,on the aerodynamic control surfaces and in the propulsion systems of high speed flight

vehicles. One of the most commonly studied SWBLIs is that generated by a sharp fin at

angle of attack, at, mounted perpendicular to a flat test surface. The fin generates a swept,

planar shock wave which interacts with the zero-pressure-gradient boundary layer on the test

surface. Recent studies have provided extensive knowledge about the mean surface

properties 1-3and the flowfield 4 of this sharp-fin interaction. Much of this information is

summarized in the reviews by Settles and Dolling. 5'6

The most salient feature of this interaction is its quasiconical nature. This has been

observed by many investigators and recently confirmed by parametric studies. 1'4'7 The

interaction growth is found to be essentially conical except for an initial region in the

immediate vicinity of the juncture of the fin leading-edge and the flat plate. The topological

features of the outboard flow thus appear to emanate from a single point, which has been

termed the "Virtual Conical Origin" (VCO). Due to the quasiconical nature of the

interaction, the most appropriate coordinate system for its study is a spherical polar system

with its origin located at the VCO. Such a coordinate frame is shown in Fig. 1.

Figure 2 shows a sketch of the limiting streamlines (i.e. the surface flow pattern) beneath

the interaction. The initial non-conical region is characterized by the inception length (Li).

Other features are indicated in the figure by their angular location (angular measure being

the only meaningful descriptor of a conical flow). These are: upstream influence (U),

primary separation ($1) , secondary separation ($2) and primary attachment (A1). The

undisturbed "inviscid" shock angle is labeled flo, and the angle of attack of the fin is tt.

Due to the quasiconical nature of this flowfield, a simplification widely used is to project

it onto a unit sphere centered at the VCO. This allows the flow to be viewed in two

dimensions and greatly simplifies its analysis. Figure 3 shows such a projection. The off-

surface features of the flowfield are sketched, including the inviscid shock wave, the

separation shock, the incoming boundary layer and separated free shear layer, the separation

bubble, the rear shock (which turns the separated shear layer back toward the flat plate),

the attachment of the boundary layer and the "slip line" emanating from the triple-point
intersection of the three shock waves.

There exists a body of evidence indicating that such SWBLIs are unsteady when the

incoming boundary layer is turbulent, but relatively little is known about the nature and

causes of this unsteadiness. Due to this inherent unsteadiness, SWBLIs can generate

significant surface pressure fluctuations. These fluctuating pressure loads are especially

significant in that they can occur in conjunction with high aerothermal loads, and can pose

a threat to the structural integrity of flight vehicles.

Much of the evidence about the unsteady behavior of SWBLIs is from optical results,

eg. high-speed cinema records, and is mostly qualitative. The available quantitative

measurements come from flush-mounted wall pressure transducers which do not disturb the

flowfield. To date, nearly all of such work has involved 2-D interactions. These include
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unswept compressionramps,8'9the symmetryplanesof unsweptblunt fins,1°forward-facing
steps,n etc. Only recently have measurementsbeen made in sweptshock/boundary layer
interactions.1z14However, there are indications that many of the basicphenomenological
features here are similar to those of 2-D interactions.

A characteristic feature observedin the 2-D interactions is the intermittent back-and-
forth motion of the separation shock.8 This gives rise to a bi-modal wall pressure signal
near separation. These two statescorrespondto the undisturbedboundary layer signature
(when the shockis downstreamof the transducer)and the higherpressurebehind the shock
(when it is upstreamof the transducer). This causesa sharprise in fluctuation intensity at
separation, represented,for example,by the rms of the instantaneouswall pressure. Tran12
measuredwall pressure fluctuations in a Mach 3 interaction generatedby a sharp fin at
several anglesof attack. He reported that, for his two strongest interactions, the wall
pressuresignalnearseparationexhibited large-amplitudeintermittent fluctuations indicating
a translating separation shockwave.

Two more-recentexperimentsmeasuredwall pressurefluctuations in a Mach 5 sharpfin
interaction: Gibson's13 measurements indicated only the presence of a quasi-steady
"shuddering"compressionsystemrather thana translatingseparationshockwave. However,
further experimentsby SchmisseurandDolling,14which were carried out in the samefacility
at the sameMach number and fin anglesasRef. 13,indicated that a translating separation
shockwas indeedpresent. The only difference between thesetwo experiments is that the
latter involved an incoming boundary layer more than twice asthick asthat of the former.
The larger transducer diameter relative to the boundary layer thickness in Gibson's
experimentsis believedto be the causeof this difference. More will be said about this issue
in the discussionof the present results.

The goal of the current study is to assessthe acoustic loadsgenerated by a sharp-fin-
generated sweptSWBLI and to gain a better understandingof the mechanismsinvolved in
their generation. Also, earlier studiesof this interaction haveconcentratedon the forward
portion of the interaction (near separation) while neglecting aft locations close to the
fin/plate junction. In the present experiments, measurements of surface pressure
fluctuations are made from front to back of the interaction, taking advantage of its
quasiconical symmetry. Finally, the presentstudy bridges the Mach number gap between
the previousmeasurements,since it is conductedat Mach 3 and 4 for a rangeof interaction
strengths.

EXPERIMENTAL METHODS

Facilities

The experiments were performed in both the supersonic wind tunnel facility and the

freejet facility of the Penn State University Gas Dynamics Laboratory. The wind tunnel is

an intermittent blowdown type with a test section size of 150 x 170 x 600 mm and a variable

Mach number capability over the range of Mach 1.5-4.0. A 57 m 3, 2000 kPa pressure

reservoir provides testing times up to 2 rain. at stagnation pressures up to 1500 kPa.

The freejet facility can eject subsonic or supersonic flows into the atmosphere using

various axisymmetric, method-of-characteristics nozzles. This facility provides essentially-
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continuoustesting times and unlimited optical access.The freejet facility canuseasits gas
supply either bottled gas or the same reservoir as the supersonicwind tunnel facility. A
non-venting regulator maintains nearly-constant total pressure conditions in the 50.8 mm
diameter stilling chamber. The stilling chamber containsa baffle plate to spreadthe flow
entering from the 19.05mm inlet pipe, a set of screensfor flow conditioning, and a port for
measuringthe total temperature and total pressure.

Experimental Setup

Fin-Generated Inter8¢ti0ns

For the present tests, a flat plate 508 mm long, spanning the tunnel, was mounted in the

test section to provide the interaction test surface. A 2-D, equilibrium, nearly adiabatic,

zero-pressure-gradient boundary layer forms on this plate 1 with natural transition typically

occurring within 10 mm of the leading edge. A fin model with a 10 deg. sharp leading edge

was placed with its tip 216 mm from the plate leading edge and 26.2 mm from the tunnel

sidewall. The fin was 120 mm long and 73 mm high. The height of the fin was sufficient to

ensure that the interaction was semi-infinite (ie. independent of fin height). A pneumatic

fin-injection mechanism was employed to hold the fin tightly onto the flat plate and to

position the fin to the desired angle of attack. Teflon tape attached to the bottom of the

fin prevented leakage underneath it during the tests, and also avoided metal-to-metal

contact during fin motion.

A simplification afforded by the quasiconical nature of the interactions under study is

that their surface properties outside the inception zone can be completely characterized by

making measurements along an arc centered at the VCO (such as that formed by the

intersection of the unit sphere with the test surface in Fig. 3). However, since the location

of the VCO lies in the vicinity of the fin leading edge but varies with interaction strength,

in the present experiments the measurement locations are simply arrayed along an arc

centered at the fin leading edge as a first approximation. Transducer ports are provided in

the flat plate at 2 deg. angular separation from 8 deg. to 70 deg. with respect to the

freestream direction. Figure 4 shows a schematic of the arrangement. No attempt was

made to optimize transducer placement for any particular interaction. The locations of the

VCO being known from previous studies, 1'4 the angular positions of the transducers were

later corrected from fin leading edge to VCO. In the remainder of this article, wherever

angular distributions of measured quantities are presented, this corrected (VCO-based)

angle is used.

In order to correlate the measured wall pressure fluctuations with knowledge of the

structural unsteadiness of the flowfield, the interaction was also studied using a non-intrusive

optical method. By optically sensing the motion of flowfield features, we expect to gain

insight into the overall unsteadiness of the flowfield. The experimental technique, called

"optical deflectometry," was developed in-house 15and has been used previously to investigate

the structure of turbulence in a compressible mixing layer) 6

The optical arrangement for the measurements is shown in Figure 5. A conical beam

of continuous white light is focused at the VCO of the swept interaction and directed along

the interaction sweep line. This beam exits the wind tunnel test section through a full-

coverage acrylic window, whereupon it strikes a ground-glass screen. With proper beam



alignment, a real-time shadowgram image is cast on the ground-glass. Alternatively, the

image can be recorded on film by using a camera in place of the ground-glass.
Alvi and Settles 17 used this technique to provide detailed flowfield information about

swept interaction flowfields. Figure 6 shows a still image from Ref. 17 as an illustration of
the level of detail that can be visualized. The image shown was obtained by using a strobed

light source with a pulse duration of the order of 10-15 microseconds. This essentially
"freezes" the flow and the unsteadiness is apparent from an examination of a series of
successive frames. However, due to the limitations of the standard video format used for

recording, successive frames are spaced 1/30th of a second apart. Therefore, a series of

frames is a discretely-sampled representation of the randomly fluctuating flowfield, rather
than a continuous one. In our case, a continuous-light source was used and a fiber-optic

pickup/cable was employed to sense fluctuations of light intensity on the ground-glass and

convey them to a rapid-response photomultiplier tube (PMT). The output of the PMT was

sampled and stored by a high-speed data acquisition system. The signal thus obtained was

a time-trace of the light intensity at the position of the fiber-optic pickup. The ground-glass
screen was mounted on a traversing mechanism, which allowed the fiber-optic pickup to be

positioned at any desired point in the field of view. Figure 7 shows an image of the

interaction as cast on the ground-glass screen. Also seen in the figure are a grid

superimposed upon the image for accurate positioning of the fiber-optic pickup, the fiber-

optic pickup/cable, and the measurement locations. The grid lines seen in Figure 7 are

spaced 5 mm apart.

Impinging Jet Measurements
Previous studies 1-3of fin-generated interactions have observed peaks in the distributions

of surface pressure, heat transfer, and skin friction in the region near the fin-plate junction.

In the present study, similar peaks in the distribution of rms pressure fluctuations were
observed in this region. The flowfield model of Alvi and Settles 4 denotes this as the

"impinging-jet" region. Briefly, they found that the streamtube processed by the separation

and rear shocks below the triple point turns toward, and attaches to, the flat-plate surface
near the foot of the fin. Aft of the inviscid shock, this streamtube is bounded by the slip-

line and the separation bubble, and resembles a jet impinging upon the plate surface. Alvi
and Settles 4 have further suggested that the stagnation of this jet on the flat plate is

responsible for the observed peaks in surface properties.

Measurements of fluctuating pressures were made along the line of symmetry of an
axisymmetric jet impinging upon a flat plate at an angle. This flow was chosen as a simple

analog to the impinging-jet region found in the rear portion of the shock wave/boundary

layer interactions under study. By studying this simplified flowfield, we hoped to gain a

better understanding of the physics involved in the generation of high levels of pressure
fluctuations in the rear portion of the SWBLIs under study.

The freejet facility described above was used for these tests. The flat-plate used for the

wind-tunnel tests was also used here as the impingement surface. A single pressure

transducer was mounted in one of the available ports and the plate was positioned 4 jet

diameters downstream of the nozzle exit. Figure 8 shows a schematic of the arrangement

used. It shows a cross-sectional view through the center of the nozzle. The plate was

mounted on a bench which could be traversed in both the x and y-directions. The single
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pressure transducer was positioned at a desired point along the line of symmetry by

traversing the plate and bench rather than by moving the transducer to a different port in

the fiat-plate. Surveys were therefore completed in multiple runs, during which the flow

conditions were kept constant.

Test Conditions

The nominal Mach numbers of the present wind-tunnel experiments were 3 and 4. The

approximate stagnation chamber pressure and temperature were 965 kPa and 300 K for

Mach 3, and 1655 kPa and 300 K for Mach 4. The freestream Reynolds number was 67 x

106 m "1 and 75 x 106 m -1 for Mach 3 and 4, respectively.

Detailed pitot pressure surveys of the boundary layer have shown that it is two-

dimensional and that its mean velocity profile closely matches the compressible law of the

wall/law of the wake. 1 At the location of the fin leading edge, d = 3.5 mm, 6" _ 1.12 mm,

and 0 - 0.13 mm. The flat plate has a negligible pressure gradient along its length and is

in a near-adiabatic condition during the experiments.

The test cases were chosen to span a wide range of interaction strengths. Previous

investigators have found that important features of swept SWBLIs scale with the strength

of the inviscid shock wave, which can be represented either by the Mach number normal to

the shock (Mn), or by the pressure rise across it (Pz/Pl). The values of these parameters for

the present cases are tabulated below.

M. _ Mn P2/Pl

10 ° 1.40 2.120

3.0 16" 1.64 2.971

20 ° 1.85 3.826

16" 1.89 4.001
4.0

20* 2.16 5.227

Of these cases, only the M,.= 4, tt = 20* interaction was investigated using the optical

deflectometry technique described above.

For the impinging jet measurements, the freejet facility was used with a Mach 1.65

method-of-characteristics nozzle. This Mach number was chosen because it was close to the

estimated Mach number of the impinging jet in the M.,= 4, _ -- 20 ° interaction. The

stagnation pressure was about 440 kPa (64 psi) such that the jet, which exited into ambient

air, was approximately perfectly expanded. The stagnation temperature for the experiments

was about 300 K. The values of the angle of impingement of the jet, _, were 30", 40*, 50*

and 60*. These values were chosen to encompass the jet-impingement angles in the swept

SWBLI cases listed in the table above, which were estimated from the flowfield maps of
Alvi and Settles. 4



Instrumentation, Signal Conditioning and Data Acquisition

Fluctuating-Pressure Measurements

The pressure transducers used in the experiments are commercially-available miniature
devices manufactured by Kulite Semiconductor Products, Inc. (model XCQ-062-50A).
They have a pressure-sensitive area 0.71 mm in diameter and an outer case diameter of 1.63

'mm. According to the manufacturer's specifications, these transducers have a natural
frequency of approximately 500 kHz, but due to the presence of perforated screens above
the diaphragm which protect it from damage due to dust particles in the flow, the frequency
response is limited to about 50 kHz. The sensitivity of the transducers is typically 0.4-0.6
mV/kPa (3-4 mV/psi). The transducers were calibrated statically using a Wallace &
Tiernan model 61A-1A-0100 pressure gauge.

The pressure transducer output was amplified and low-pass filtered using Precision
Filters model 6602B-I-LP1 filters prior to digitization. LeCroy model 6810 Waveform
Recorders with 12-bit resolution were then used to digitize and record the signals. The
sampling frequency was 100 kHz and the low-pass filter cutoff frequency was 45 kHz. Six
transducers were used in each test, and the signals from them were simultaneously sampled

and recorded. For each channel, 128 records of 1024 points were acquired, yielding a total
of 131,072 data points per channel per tunnel run. This sample size was large enough to
ensure convergence of its statistics.

A simple test was devised to assess the magnitude of electronic noise present in these
signals. Data were acquired with the transducers exposed to a constant pressure (so that,
ideally, no fluctuations should be recorded), keeping the instrumentation settings the same
as for the actual tests. These data were then processed in the same fashion as actual
fluctuating pressure data. The rrns "noise-pressure" level was then compared to the rms

level measured beneath the undisturbed boundary layer. The noise rms was found to be
approximately one-fifth of the rms level underneath the Mach 4 boundary layer. This
represents a worst case scenario; the rms pressure beneath the Mach 3 boundary layer was
twice as high as the Mach 4 case (due to the higher static pressure for Mach 3), and the rms
levels beneath the corresponding interactions were higher still. Therefore, the signal-to-
noise ratio (SNR) was greater than five in all cases.

Optical Dcflectometry Measurements
As shown in Figure 5, a fiberoptic pickup/cable was used to sense the illumination at

a given point in the conical shadowgram and to convey it to a photomultiplier tube (PMT).

The PMT (Hammamatsu R928), converted these illumination levels to analog signals which

were digitized and recorded by the data acquisition system described above. The number

of samples recorded was the same as for the pressure measurements.

The PMT was operated in a range in which its voltage output varies linearly with the

intensity of incident light. The frequency response of the PMT is essentially unlimited and

flat well into the MHz range of frequencies. However, due to the presence of unexplained

sources of noise in the 70-80 kHz range, it was necessary to low-pass filter the PMT output

above 65 kHz, and the signal was then sampled at 200 kHz. In order to avoid fluctuations

in light intensity at line frequency, a halogen bulb powered by a DC supply was used as the
light source.
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The output of the PMT in the present experiments is proportional to the light intensity

at the location of the fiberoptic pickup in the shadowgram, which in turn is proportional to

the second spatial derivative of density at that point. The purpose of these experiments was

not to me:_sz_re any conventional physical flowfield variable. Rather, they were primarily

intended to optically detect the motion of flowfield structures and disturbances in the

interaction. This is made possible by the fact that such flow features and acoustic

disturbances are rendered visible in a shadowgram due to the density gradients associated

with them. The magnitude of fluctuations of the PMT signal, as represented by its rms

value for example, is a measure of the fluctuating energy of these disturbances.

The noise inherent in the PMT is broadband and increases in proportion to the incident

light intensity. It was found during the course of the experiments that the rms level of

fluctuations recorded at any given point also increased approximately linearly with the mean

light intensity at that point. Since the illumination level was not uniform over the whole

shadowgram (as can be seen in Fig. 7), the measured rms level was normalized by the mean

value in order to remove this inherent bias. No attempt was made to calibrate and convert

the voltages recorded to units of light intensity since it is the temporal behavior of the light

fluctuations that is of interest, not the optical intensity itself.

RESULTS & DISCUSSION

Incoming Boundary Layer Measurements

The probability density distributions of the incoming boundary layer pressure fluctuations

were essentially Gaussian. The present power spectra agreed qualitatively with previously

published results. 12"14 The rms of the wall pressure fluctuations normalized by the

freestream static pressure, are/P, was determined to be 0.013 _ 0.001 for Mach 3, and
0.0115 _ 0.001 for Mach 4. These values are somewhat low compared with the semi-

empirical prediction of Laganelli et al TM (are/P,, = 0.023 and 0.03 for Mach 3 and 4

respectively), but agree well with the Mach 3 measurements of Tan et a119 (are/P. = 0.013

+_ 0.0005) and those of Dolling and Or 9 (or/P, = 0.016 -+ 4%). Experimental data
generally tend to fall below the predicted values. This is due to the finite size of the

transducers used, which are "large" compared to the length scales of the fine-scale turbulent

structures in the boundary layer, thus tending to eliminate the contributions of high

frequency fluctuations. Moreover, the incoming boundary layer has significant energy above

the filter cutoff frequency (about 45 kHz) since a typical large eddy frequency in the present

experiments is 200 kHz (Uo//;). However, since the pressure fluctuations inside the

interactions themselves are dominated by relatively low frequencies, this is not considered

to be a serious limitation of the present experimental program. In other words, our

emphasis is not on the incoming boundary layer or the separation location at the beginning
of the interaction.

Interaction Measurements

RMS Distributions

Distributions of the rms pressure fluctuation level, ot,, along with the corresponding mean
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pressuredistributions are presented in Figure 9 for M=3 and 4, e = 16and 20 deg. These
rmsvalues are showntwice,being normalizedby both the freestreampressure(P®)and the
local mean pressure (Pw)- The flowfield maps constructedby Alvi and Settles4 for these
casesare also shown. Note that the flowfield mapsaredrawn on the samescaleasthe rms
and mean pressuredistributions, facilitating visual comparison of the three. Some features
of these distributions are describedbelow.

When normalized by the local meanpressure,the rms distributions displayfeatures that
are apparently universal in SWBLIs - both 2-D and3-D. One of these is the peak observed
at separation. However, in 2-D interactions, the magnitude of this peak is much larger (as
much as25% of the local mean pressure) than in swept interactions. This peak is widely
believed to be causedby the intermittent motion of the separation shock. Its low present
value (0.039max.)suggeststhat intermittency maybe lesspronounced in sweptinteractions.
However, the valuesmeasuredby Tran12in swept interactionswith the sameMach number
and fin angle were almost twice as high. The comparatively-low values measured in this
study are probably due to a spatial resolution problem suffered by the present
measurements,aswill be explained in the next section.

Aft of the separation peak, the rms level is observed to drop and remain relatively
constant for someangular distance. This regionapproximately correspondsto the so-called
"plateau region" in the mean pressure distributions. Examination of the flowfield maps
reveals that there are no significant changesin the flowfield (both on and off the surface)
over much of this region.

The next feature in the rms distributions of Fig. 9 is the appearanceof a secondpeak
downstream of the first. This occurs in the vicinity of the "dip" in the mean pressure
distribution. The magnitude of this peak is approximately the same as that of the peak
associatedwith separation. It can be seenthat this downstream fluctuating pressurepeak
lies directly beneath the coreof the separationvortex. This is observed in all the present
test casesand is believed to be the causeof the peak in the rms level.

The data presented in Ref. 14also exhibit this peak, although in their caseit is located
upstream of the inviscid shock wave, which is more highly swept due to their larger Mach
number. In the absence of flowfield visualization of the Mach 5 interactions, definite

conclusions cannot be drawn from this observation. However, it does offer a clue as to the

possible development of the off-surface flowfield structure as Mach number is increased.

From the flowfield maps shown in Fig. 9, it can be seen that the inviscid shock position and

the vortex core grow closer together as the interaction strength is increased. It is believed

to be possible that this trend continues such that, for very strong interactions, the separated

vortex core actually lies upstream of the inviscid shock position.

The highest raw pressure fluctuation levels are observed at locations close to the fin (this

region had been neglected in earlier studies) in the impinging-jet region. A peak in rms

level is observed slightly upstream of the location of primary attachment in all cases except

the Mach 4, a_= 20* case. We believe this is caused by a random motion of the attachment

line. This phenomenon will be discussed along with the presentation of the results of the

impinging jet experiments. Aft of this peak, the rms level decreases, and is seen to rise

again at locations closest to the foot of the fin. This rise in fluctuation intensity is believed

to be due to the "flapping" motion of the slip line, which was observed by Alvi and Settles. 4

The highest rms level recorded in these experiments is 0.32 psi in the Mach 3, a_= 20 ° case,
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which correspondsto a sound pressure level of 160 dB (referenced to 20 i_Pa absolute).

This fluctuating pressure level is approximately 10% of the freestream static pressure (3.2

psia at Mach 3). This places such interactions in the category of significant acoustic-load

generators.

The maximum value of aJP,, is plotted versus the Mach number normal to the inviscid
shock (Mn) in Figure 10. Previous investigators 4 have found M n to be the best overall

parameter to describe the interaction strength. Here one observes the general trend that

a rise in fluctuation intensity occurs with rising interaction strength as denoted by Mn.

Figure lla shows a plot of the magnitude of the fluctuating pressure peak near primary

separation versus the angle of the primary separation line (flsl). There appears to be a

roughly-linear correlation between these two quantities. The greater the separation-line

angle (/.e. the less swept-back the interaction), the higher the fluctuation intensity.

Schmisseur and Dolling's 14 compilation of data from their own sharp fin experiments,

Tran's 12 sharp fin experiments at Mach 3, and the swept compression ramp data of Erengil

and Dolling _° all showed a similar quasi-linear correlation between the maximum rms

pressure level in the intermittent region and the separation line sweepback angle.

In Fig. llb, the peak fluctuation value near S_ is next plotted versus (flo-la,.), which is a

"reduced" shock strength parameter that takes into account the effect of freestream Mach

number on shock strength (here,/a., is the Mach angle of the freestream). The collapse of

the data onto a single line is somewhat better in Fig. l lb than in Fig. l la. The

identification of the parameters that control the magnitude of pressure loads in these

interactions is not considered to be completed by Figs. 11, but it is a beginning.

Probability Density Distributions

The probability density functions (pdf's) of the pressure fluctuations are expected to be

of interest mainly in the forward portion of the interaction, near separation. This is because

an intermittent signal, such as may be caused by a translating separation shock, has a

distinctly non-Gaussian pdf 8'12'14 which may be highly skewed or bi-modal. In the present

study - for all the cases tested - the pdfs were found to be essentially Gaussian throughout

the interaction. Even close visual inspection of raw pressure-time histories does not reveal

any evidence of intermittency in the present data. Of the three other existing studies of

pressure fluctuations in sharp fin interactions, two (Refs. 12 and 14) found evidence of

intermittent separation. The other experiments (Ref. 13) found no such evidence.

We believe we have identified the reason for this discrepancy. The experiments which

do not exhibit intermittent separation were conducted beneath a relatively-thin flat-plate

boundary layer, whereas the other two experiments used a tunnel-floor boundary layer which

is an order of magnitude thicker. In the present study, the flat-plate boundary layer

thickness is less than twice the transducer diameter. Now, if the typical length scale of the

region within which the separation shock oscillates (called Ls_o_k by some investigators) is

of the same order of magnitude as the boundary layer thickness, it might very well happen

that this region either falls between two adjacent transducers or else completely on the face

of one transducer in the "thin" boundary layer cases. In either case the pressure signal thus

recorded will not show intermittency, even if it is actually present in the flow. (It should be

noted that a direct scaling relationship between Lsho_k and the boundary layer thickness has

not been demonstrated, 9 though it is known that these two length scales are always at least
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of the sameorder of magnitude).
Thus, the explanation of the discrepancyin pressure-fluctuation intermittency found in

Refs. 12-14and the presentwork is that it is essentiallya resolution problem with the thin-
boundary-layer experiments. This also explains the lower rms levels recorded near
separation in the current study, compared to those of previous experimentsusing thicker
boundary layers.

Power Spectra

Figure 12 presents the power spectra from the present Mach 4, tt =20* interaction at

locations ranging from the undisturbed boundary layer to the fin/plate junction. These

spectra are representative of the trends observed in all the other interaction cases studied.

The corresponding flowfleld map can be seen in Fig. 9. The abscissa of Fig. 12 is the "raw"

power spectral density (PSD) plotted on a logarithmic scale. (The conventional practice of

normalizing the PSD by the rms level has deliberately not been followed here in order to

show more clearly the evolution of the energy content of different frequency ranges through

the interaction).

As expected, the incoming boundary layer spectrum in Fig. 12 is broadband and

approximately flat up to the filter cutoff frequency of about 45 kHz. Note that there is

significant energy above the cutoff, as mentioned earlier. However, since the present focus

of interest is on the higher-amplitude, lower-frequency fluctuations in the interaction, this
is not a serious limitation.

Near primary separation (Fig. 12b), a dramatic increase in energy up to about 30 KHz

is observed. This is thought to be due to the motion of the separation shock. Further

downstream, under the separation bubble, the spectrum "relaxes" back to its original shape,

but with increased energy content over the entire range of frequencies measured (Figs. 12c-

f). This is reflected in the elevated rms levels also seen at these locations (see Fig. 9).

Referring to the flowfield map in Fig. 9, one sees no new flow features for some angular

distance downstream of primary separation, and the spectrum shape remains approximately

the same in this region.

Then, as the location of "secondary separation" is approached (13=37 deg., Fig 12h), an

increase in energy is observed in the frequency range 0-15 KHz. In their conical

shadowgraphy experiments, Alvi and Settles 4 observed significant optical disturbances in the

flowfield near secondary separation, but its exact nature was not clear. They also concluded

that only incipient secondary separation occurred under present conditions.

At locations still further aft, in the "impinging jet" region (Figs. 121-n), there is a shift in

spectral energy from high- to low-frequency fluctuations. It is suggested that this is due to

the fact that these locations are relatively isolated from the influence of the turbulent

separated shear layer, which wraps around the vortex core and becomes a part of the

reverse flow upstream of these locations (see flowfield map in Fig. 9). Visually, the small-

scale turbulence of the free shear layer never extends aft of about fl = 28* in the Mach 4,
a: =20 ° interaction.

The spectra closest to the fin/plate junction, where the highest rms levels were

measured, are dominated by very low frequencies in the range 0-5 kHz (Figs. 12o,p). As

mentioned above, it is possible that this is due to the "flapping" motion of the slip line,

which was observed by Alvi and Settles. 4
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Coordinate Frame of Fluctuation Spectra

The axes used to plot the power spectra presented above are different from those

conventionally used by previous authors. 12-14 In these previous studies, the quantityfG(f)/at,2

is plotted vs. f on a linear-log scale, where f is the frequency, G(f) the power spectral

density at frequency f, and ap2 is the variance of the fluctuations. When plotted on these

axes, a power spectrum has an area under it equal to unity. Also, the area under a given

curve segment is linearly proportional to the contribution of that frequency range to op2.

However, Dolling and Dussauge 21have pointed out the drawbacks of this approach and have

suggested that care must be taken in the interpretation of such spectra. Due to the

logarithmic abscissa, the magnitude of the frequency range spanned by two curve segments

of equal width but located at different center frequencies is different. The curve segment

at the higher center frequency spans a much larger range of frequencies than does the one

at the lower center frequency. This is illustrated in Figure 13a. In Figure 13b, the same

spectrum shown in Fig. 13a is plotted as G(f) vs. f on log-linear axes. The spectrum shown

in these Figs. is the same as Fig. 12b (i.e. near primary separation in the Mach 4, t_ =20*

interaction). It can be seen that what appears to be a dominant peak around 7 kHz in Fig.

13a is barely noticeable in Fig 13b. Thus, we believe that plotting fG(f)/op 2 vs. f can be

misleading, and have thus chosen to show the present power spectra in the G(f) vs. f log-
linear coordinate frame.

Supplementary Experiments

The optical deflectometry and impinging jet experiments were carried out to supplement

the results of the unsteady pressure measurements described above. The results of these

two experiments will be described briefly here; they will be dealt with in greater detail in

the first author's doctoral dissertation, which should be available in a few months' time.

Optical Deflectometry

RMS Distributions

Figure 14 shows the distribution of rms light-intensity (normalized by the mean level)

along rows A, B, D and E (refer to Fig. 7 for row locations). The abscissa is the horizontal

distance, in centimeters, along the row from the leftmost measurement location. Thus,

distances are measured from location A1 in Fig. 14a, and from location D1 in Fig. 14c, for

example. Selected measurement location numbers are also shown in Fig. 14 for reference.

Row A is located above the triple-point and cuts across the "main" shock wave. It can

be seen that the fluctuation level is relatively constant in the freestream flow upstream of

the shock, and reaches approximately the same level far downstream of it. The rms level

increases in the vicinity of the shock wave. This is an indication of shock oscillation since

motion of the (dark) shock across the measurement location causes larger variations in light

intensity than do turbulent fluctuations in the freestream, for example. It should be noted

here that what appears to be a "twin peak" distribution with peaks immediately upstream

and downstream of the shock is actually a single peak. The locations embedded in the

shadow of the shock wave (locations 7 and 8 in Fig. 14a) record lower rms levels because

the shock wave never completely moves across them. This is due to the finite thickness of
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the shock wave in the shadowgram - a limitation of any practical shadowgraphy
arrangement. A dashed line in Fig. 14 shows the expected behavior of the true rms
distribution.

The rms distribution along row B is very similar to that along row A. The rms levels at

both extremes of the row are approximately the same as for corresponding locations in row

A. There is again a rise in fluctuation intensity in the vicinity of, and across the triple-point

of the _.-shock structure. However, the peak is larger in magnitude, indicating the presence

of stronger fluctuations.

Row D passes through the separation and rear shock waves, and its downstream end is

just aft of the slip-line. The rms distribution for this row is shown in Fig. 14c. Proceeding

along row D from right-to-left (in the direction of the flow), a sharp peak is observed

immediately downstream of the separation shock (location 25). In the region between the

separation and rear shocks, the rms level is approximately constant but higher than the level

in the freestream.

This is to be expected since this is a region of uniform flow, having been turned by a

straight, oblique shock. The higher fluctuation level is likely due to acoustic radiation from

the separated, free shear layer. Further downstream, there is another sharp peak (location

11) behind the rear shock. This location is close to the foot of the rear shock, which has

been observed to be highly unsteady. 17'_ The unsteadiness of the rear shock foot is probably

caused by its intersection and interaction with the free turbulent shear layer bounding the

separation bubble. Aft of location 11, there is another small peak at location 3. This can

be explained by the flapping motion of the slip-line which has been observed by Alvi and

Settles 17 in their high-speed shadowgrams.

The rms distribution along row E, presented in Fig. 14d, exhibits two peaks with an

approximately-constant level between them. The upstream peak (locations 20 and 21) is due

to the motion of the separation shock. The peak at location 6 is caused by unsteadiness of

the embedded jet shock seen in Fig. 7.
The rms distributions discussed above indicate that the features of the interaction visible

in Fig. 7 are all unsteady. In the optical deflectometry measurements this behavior is

manifested as increased rms light intensity in the vicinity of these unsteady flow features.

Our measurements also allow us to make some observations about the technique itself.

From a comparison of Figs. 6 and 7, it is obvious that the continuous-light shadowgram only

shows the large-scale features of the flow; the finer details visible in Fig. 6 are missing. This

is due to the fact the continuous-tight shadowgram averages or "smooths-out" small-scale

fluctuations which have a time scale much smaller than the exposure time (1/30th of a

second). The fact that the rms distributions recorded here are fairly constant except in the

vicinity of the large-scale features (mainly shock waves) of the mean flowfield indicates that

the technique is, for the most part, sensitive only to strong fluctuations which have large

density gradients associated with them. A similar technique based on the Schlieren method

could be expected to provide greater detail, but that has not been attempted here.

Power Spectra

The rms distributions presented above show that the entire _.-shock structure is unsteady.

However, the characteristics of the unsteadiness are different in different parts of the

flowfield. Some of these differences can be made apparent by a examination of the power
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spectraof fluctuations recorded at various locations in the interaction.
Figs. 15 - 18present the power spectra along the rows for which the rms distributions

were discussed in the previous section. A shadowgram similar to Fig. 7 showing the

measurement locations is also included in these figures for convenience.

It can be seen from Fig. 15 that the fluctuations in the freestream flow both upstream
and downstream of the "main" shock wave are broadband and are constant over the

frequency range measured. The increase in rms levels upstream of the shock (location 9)

is mainly in the 0-15 kHz range. We believe this range represents shock oscillation

frequencies. At location 6, the entire range of frequencies measured has greater energy but

the spectrum is still dominated by "lower" frequencies. The increased energy levels rapidly

dissipate downstream of the shock, and the spectrum returns to its original shape.

The freestream spectra along row B (see Fig. 16) are essentially identical to those in row

A. The behavior near the triple point, however, is different than in the vicinity of the main

shock. The range of frequencies excited extends to approximately 35-40 kHz. The greatest

increases in energy are in the 0-10 kHz range, where the spectral level is approximately

constant. Also, the decay of the fluctuations aft of the shock wave extends downstream for

a considerable distance. This can be seen in the spectrum for location 4, which still has

significant energy in the 0-20 kHz range. This may be due to the vicinity of this location to

the slip-line, which is known to be unsteady. The intersection of three shock waves and the

presence of the slip-line make it difficult to isolate the effects of any particular feature, or

to draw more specific conclusions from the data.

Power spectra for locations along row D are shown in Figure 17. It can be seen from

the spectra around location 25 that the separation shock excites a broad range of

frequencies (up to approximately 35 kHz). Similar increases were observed in the pressure

fluctuations measured at the foot of the separation shock as discussed above. The spectra

are dominated by extremely large fluctuation levels at very low frequencies. In the "plateau"

region between the separation and rear shocks, the spectra are broadband and flat over

essentially the entire frequency range (locations 17-20). The rear shock (locations 9-14)

causes increases in energy levels over frequencies extending up to 40 kHz. The distribution

of energy in the region between the rear shock and the slip-line (locations 4-8) is broadband.

The slip-line itself is seen to have greater energy below 6-7 kHz (locations 2-3).

Finally, power spectra for selected locations along row E are presented in Fig. 18. The

spectra in the vicinity of the separation shock (locations 19-24) show features that are

similar to those of corresponding locations along row D. There is evidence of a peak in the

0-10 kHz range and the spectra are dominated by low frequency fluctuations. Inside the

separation bubble (locations 10, 14, 16) the spectra are flat and broadband for the

frequencies measured. The imbedded jet shock shows a gradual "roll-off' up to the cutoff

frequency, with the lowest frequencies being the most prominent.

The power spectra presented here indicate that the entire shock structure generated by

the interaction undergoes relatively low-frequency oscillations. The shock waves excite a

broad range of frequencies which quickly dissipate at locations removed from the immediate

vicinity of these waves. The separation shock oscillations, in particular, seem to be

dominated by very low frequencies.
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Impinging Jet Measurements

The rationale for conducting the impinging jet measurements has been discussed above.

All the cases measured showed similar features. Therefore, only one representative case will

be presented here. This is the case with the jet impinging upon the flat plate at _ = 50 °.

Figure 19 shows the rms and mean pressure distributions measured for this case. A

schematic of the arrangement is also shown in the figure. The '"oump" in the distributions

between s/D -- -1 and s/D = -2 is due to the reflection of the terminating shock wave from

the free shear layer which impinges upon the plate surface as an expansion wave. This, in

turn, reflects from the plate surface and sets up a series of alternating shock-expansion

impingements upon the surface. This is not a present limitation because we are primarily

interested in the region near the centerline of the jet close to the stagnation point.

It can be seen that the mean pressure is highest at a location off the centerline of the

jet. This is due to the fact that, for a jet impinging upon a flat surface at an angle, the

stagnation streamline moves off the jet axis." In all the cases measured, as in the case

shown, a peak in the rms distribution is observed slightly displaced from the peak in the

mean pressure distribution.

Kuethe et a124 have noted that velocity fluctuations in the vicinity of the stagnation point

on blunt bodies in a uniform flow are higher than in the freestream. Their investigation of

the flow near the stagnation point indicates that these fluctuations are a result of a random

motion of the stagnation point in both subsonic and supersonic flows. We believe the same

mechanism is responsible for the observed peak in rms pressure in our case. Conceptually,

the movement of the stagnation point may be equated to movement of the mean pressure

distribution back-and-forth over a transducer at a fixed location. Since the gradients in

mean pressure are high near the stagnation point, such a motion will cause high fluctuating

levels to be recorded. Also, since the mean pressure gradient is steeper to the right of the

mean pressure peak (see Fig. 19) than to its left, the peak in rms pressure appears to the

right of the stagnation point.

We believe this phenomenon is also present in the interactions under study and is

responsible for the peak in rms seen slightly upstream of the attachment location in the rms

pressure distributions presented in Fig. 9. An examination of the corresponding mean

pressure distributions shows that the difference between the mean pressure gradients to

either side of the peak is even greater in the interactions than in the impinging jet case. At

this point, the proposed connection between the motion of the stagnation point and high rms

pressure levels must be considered as an hypothesis. A more detailed examination of the

issues involved is necessary before any definite conclusions can be drawn.

CONCLUSIONS

Fluctuating pressure measurements have been made beneath swept SWBLIs generated

by sharp fins at angles of attack between 10 and 20 degrees at Mach 3 and 4. The pressure

fluctuation levels generated by these interactions had not been extensively studied earlier.

Measurements were made across the entire range from front to back of these interactions.

Analysis of the data provided distributions of rms pressure fluctuations and their spectral
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content. The conclusionsreachedthus far canbe summarizedas follows:
1. The class of interactions under study can generate significant aeroacousticloads on

portions of high-speedaircraft. The highest loads are experiencedat locationsclosest
to the foot of the fin. Theseare dominated by low-frequency fluctuations in the range
0-5kHz, and reach a maximum soundpressure level of 160dB in the casesstudied.

2. The peak rms level in these interactions (when normalized by the freestream static
pressure)scalesapproximatelywith the Mach number normal to the inviscidshockwave
(Mn).

3. The phenomenonof intermittent separation,which hasattracted muchattention in 2-D
interactions, is lesssignificant in swept interactions. Nonetheless,an rms pressurepeak
associatedwith motion of the separationshock is observed in the current experiments.
The magnitude of this peak scaleswith the sweepangleof the separation line.

4. High spectral energy levels at low frequencies are observed beneath the "jet
impingement" region of these interactions.

5. Distributions of rms pressurelevels,when normalized by the local mean pressure,show
fluctuation-energypeaksnear primary separation and beneath the vortex core.

6. The influence of transducer spatial resolution has been clarified with respect to the
detection of intermittent separation in these interactions. Transducers of a size
comparableto the incoming boundarylayer thicknessareunable to detect intermittency,
resulting in underestimatedrms levels and erroneousprobability density functions near
separation.

7. The rms distributions and power spectraof surfacepressurefluctuations canbe related
to the observedfeatures of the flowfield off the surface.

8. Caution must be exercised in the choice of coordinate frame for presentation of spectra

in order to avoid misconceptions.

In addition to the conclusions reached on the basis of fluctuating pressure measurements

in the swept SWBLIs, the supplementary optical deflectometry measurements and the

impinging jet experiments have provided us with additional information which is pertinent:

1. The entire lambda-shock structure generated by the interaction undergoes relatively low-

frequency oscillations.

2. The separation shock motion displays features distinct from that of the other features

of the flow field. Its oscillations are dominated by very low frequencies in the 0-10 kHz

range.

3. Fluctuating pressure measurements on a flat surface upon which a supersonic jet is

incident at an angle indicate that the phenomenon responsible for high rms pressure

levels in the rear portion of swept SWBLIs may be a random motion of the stagnation

point corresponding to primary flow attachment.
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Fig. 1 Spherical polar coordinate frame. Fig. 2 Sharp fin interaction footprint with
nomenclature definitions.

Fig. 3 Projection of quasiconieal interaction
onto spherical coordinate surface.

Fig. 4 - Model schematic showing transducer locations
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Pig. 8 Setup for impinging jet measurements
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Fig. 15 Power spectra of light-lntensity fluctuadons along row A.
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Fig. 16 Power spectra of fight-intensity fluctuations along row B.
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Fig. 17 concluded.
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Fig. 18 Power spectra of light-intensity fluctuations along row E.
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